Exam paper¹

T

Consider the differential operator $D = (\frac{d}{dx})^2 - 2\frac{d}{dx} + 1$.

- 1. Determine the fundamental solution of D belonging to $\mathcal{D}'_{+} = \{T \in \mathcal{D}'(\mathbb{R}) : \sup(T) \subset [0, +\infty)\}.$
- 2. Determine the solution $T \in \mathcal{D}'_+$ of the equation DT = Y (Y the Heaviside one-step function). Hint: use convolution and/or symbolic calculus.
- 3. Determine, with the help of the Heaviside symbolic calculus, the solution f of the following classical initial value problem, where g is a given continuous function defined on \mathbb{R} :

(1)
$$Df = g, \ f(0) = 0, \ f'(0) = 1.$$

- 4. Find the solution f in the case where g = 1.
- 5. Let G be a function of the class C^2 on \mathbb{R} . Under which circumstances on G does there exist a continuous function f on \mathbb{R} which satisfies the following convolution equation? Determine in that case the solution f.

(2)
$$\int_0^x f(x-y)ye^y dy = G(x) \qquad x \ge 0$$

I

Notations: $\mathbb{R}_* = \mathbb{R} \setminus \{0\}$. $E = \{T \in \mathcal{D}'(\mathbb{R}) : T_{|\mathbb{R}_*} = \frac{1}{x}\}$.

- 1. Give the definition of the distribution $pv\frac{1}{x}$ and show that it belongs to the set E.
- 2. Determine all distributions belonging to E. Hint: The set $E_0 = \{S \in \mathcal{D}'(\mathbb{R}) : S_{|\mathbb{R}|} = 0\}$ is known.
- 3. Show that there exists precisely one distribution T in E which is homogeneous of degree -1 and odd.

III

Let T and T_{ε} be tempered distributions, $\varepsilon > 0$. One poses by definition $T = \lim_{\varepsilon \to 0} T_{\varepsilon}$ in $\mathcal{S}'(\mathbb{R})$ if $\langle T, \varphi \rangle = \lim_{\varepsilon \to 0} \langle T_{\varepsilon}, \varphi \rangle$ for all $\varphi \in \mathcal{S}(\mathbb{R})$.

- 1. Show that this has the following consequence for the Fouriertransform \mathcal{F} : $\mathcal{F}(T) = \lim_{\varepsilon \to 0} \mathcal{F}(T_{\varepsilon})$.
- 2. Let T_{ε} be the regular distribution $Y(x)e^{-\varepsilon x}$. Show that $\lim_{\varepsilon \to 0} T_{\varepsilon} = Y$ in $\mathcal{S}'(\mathbb{R})$.
- 3. With the help of this result determine the Fourier transform of Y.

 $^{^{1}\}mathrm{The~parts~I,~II}$ and III are independent. Clarify your answers by stating the theorems used.